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ABSTRACT1
This study discusses a bilevel optimization problem for allocating rail freight subsidies in2
a multimodal multicommodity freight transportation market so as to simultaneously miti-3
gate the revenue loss of the rail carrier and the congestion cost of cargo shippers choosing4
rail freight services. The lower-level part poses a freight transportation network equilibrium5
model that explicitly considers transportation capacity and bottleneck congestion. The6
upper-level part sets line-specific subsidies under a subsidy budget, minimizing a weighted7
sum of the total revenue loss and total congestion surcharge. Revenue loss reflects the8
potential loss of the rail carrier due to unused capacity, while congestion surcharge quanti-9
fies individual shippers’ waiting delay for the limited transportation capacity of rail lines.10
The solution procedure relies on a tabu search metaheuristic, in which the lower-level equi-11
librium problem is solved by the iterative balancing algorithm in the Lagrangian relaxation12
framework. The proposed optimization model and solution method are applied to the China-13
Europe freight transportation market. The results show that the optimized subsidy scheme14
significantly outperforms the current subsidy scheme by reducing both the total revenue loss15
and total congestion surcharge in all months of the year of 2019. Specifically, the optimized16
subsidy scheme reduces the total revenue loss by 27.3% and the total congestion surcharge by17
64.2%. The weighting coefficient can effectively adjust the relative importance of the carrier18
and shippers in the freight subsidy design: minimizing only the total revenue loss reduces it19
by up to 16.3% but increases the total congestion surcharge by up to 540%; minimizing only20
the total congestion surcharge reduces it by up to 44.2% but increases the total revenue loss21
by up to 30.1%.22

23
Keywords: China Railway Express, Freight subsidy optimization, Network equilibrium, Rev-24
enue loss, Congestion surcharge, Tabu search25
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INTRODUCTION1
Increasing the market share of rail freight services is often of positive significance for reducing2
carbon emissions and enhancing operational efficiency in the freight transportation sector. In3
the China-Europe freight transportation market, for example, China Railway Express (CRE)4
offers average transit times only one-third of those of China-Europe liner shipping lines5
(1). To increase the attractiveness of the CRE service, the Chinese government has taken6
proactive measures such as offering subsidies to reduce the CRE freight rates in the hope7
of attracting more demand. However, the current CRE subsidies own some shortcomings.8
First, all existing subsidy schemes are city-specific, typically providing a uniform subsidy9
amount to all CRE lines starting from the jurisdiction of a city. Such a simple subsidy10
policy overlooks the distinct operational features and competitive characteristics of different11
CRE lines in the market. Second, the China-Europe freight transportation market is a highly12
sophisticated and highly competitive economic system that involves multiple transportation13
modes and freight service lines, compounding the complexity of subsidy implementation.14
Without carefully considering the interaction between different CRE lines and between the15
CRE service and other freight transportation services in the market, the efficacy of subsidies16
will fall short of the optimal level. The still relatively low market share and competence of17
the CRE service under existing CRE subsidies reflect these challenges (2).18

Freight transportation network models serve as fundamental tools for evaluating and19
optimizing subsidies, mathematically capturing spatiotemporal supply-demand interactions20
such as capacity constraints and congestion effects. Existing subsidy optimization models21
based on freight transportation models have various objectives, such as promoting infras-22
tructure use, increasing carriers’ profits, reducing greenhouse gas emissions, mitigating con-23
gestion, or alleviating geopolitical risks (3–5). However, in such models, the implicit waiting24
delays incurred by individual cargo shippers due to competition for limited transportation25
capacity are less frequently considered. Although Zhang et al. (6) impose an upper limit on26
the queueing delay of shippers, the dynamic traffic assignment models they introduce add27
significant complexity. Economically, the dual variables associated with the transportation28
capacity constraints of the optimization problem, termed congestion-induced waiting delay,29
represent the implicit waiting delay incurred by shippers to access their desired service links.30
However, the explicit incorporation of congestion-induced waiting delay into the objective31
function of subsidy optimization models is less common in the existing literature.32

To this end, this paper discusses a bilevel subsidy optimization model for designing33
rail freight subsidies, with its application to the China-Europe freight transportation market.34
The lower-level model poses a multimodal multicommodity freight transportation network35
equilibrium model with explicit link capacity constraints. The upper-level model sets line-36
specific subsidies under a subsidy budget constraint, minimizing the weighted sum of the total37
revenue loss of the carrier and the total congestion surcharge of shippers using a weighting38
coefficient ranging from 0 to 1 to adjust the relative importance of the carrier and shippers.39
We apply this model to the China-Europe freight transportation network with CRE, China-40
Europe liner shipping, and the highway networks in China and Europe, with categorized41
monthly O-D freight demand rates for the year of 2019 serving as the demand input. Unlike42
existing models, our approach not only commits to increasing the utilization of rail freight43
transportation, but also considers protecting shippers from excessively concentrating on a44
small number of rail lines by explicitly introducing congestion surcharge as a cost term into45
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the objective function, which monetizes the dual variables associated with transportation1
capacity constraints. This form of the objective function, which simultaneously incorporates2
primal variables (i.e., revenue loss of the rail carrier) and dual variables (i.e., congestion3
surcharge of cargo shippers) of the optimization problem, poses a new modeling approach4
that is less commonly adopted in the literature on freight subsidy design.5

The remainder of the paper is organized as follows. The next section proposes the6
bilevel freight subsidy optimization model and develops the solution procedure for this model.7
The numerical analysis section applies the proposed model to the multimodal multicommod-8
ity China-Europe freight transportation network. The results are analyzed in two key as-9
pects: A comparison between the optimized subsidy scheme and the current subsidy scheme,10
and a comparison among optimized subsidy schemes with different weighting coefficients in11
the objective function to evaluate policy trade-offs between the interests of the carrier and12
shippers. Finally, the last section summarizes our modeling work and reveals solution be-13
haviors and advantages of the proposed model.14

METHODOLOGY15
Network Representation16
The multimodal multicommodity freight transportation network is represented by a directed17
graph G(N ,A). The set of nodes N , indexed by n, includes product origin cities O, product18
destination cities D, and intermediate transfer nodes I. The set of origin-destination pairs19
is defined by W ⊆ O × D. The set of commodity categories M, indexed by m, groups20
commodities based on the HS codes. The set of directed links A, indexed by a, includes four21
distinct types: railway service links Ar, liner shipping links As, bottleneck facility links Ab22
(e.g., seaports, water channels, and break-of-gauge stations), and highway network links Ah.23
Air transportation is not considered in the model, as it is attractive only for commodities24
with extremely high time sensitivity and does not directly compete with other modes.25

Links are grouped based on two key characteristics: whether they have fixed transit26
times and whether they have fixed physical transportation capacity. Railway service links Ar,27
liner shipping links As, and highway network links Ah all have fixed transit times, denoted28
by t̄a for each link a. Bottleneck links Ab have flow-dependent transfer delays ta(xa) =29
t0
a

(
1+α(xa/unom

a )β
)
, where t0

a is the free-flow transit time, unom
a is a nominal capacity30

parameter, and α, β are model parameters. Railway service links Ar and liner shipping31
links As have limited physical transportation capacities ua that enforce xa ≤ ua. Highway32
network links Ah are not modeled with transportation capacities. Moreover, only railway33
service links Ar are assumed to be eligible for government subsidies, which is consistent with34
policy practice in the China-Europe freight transportation market.35

The set of scheduled service lines L includes railway service lines Lr and liner shipping36
lines Ls. Each path k ∈ Kw for O-D pair w uses exactly one service line l, satisfying ∑

l λk,l = 137
where λk,l is the path-line incidence indicator. Each railway service link or liner shipping38
link a ∈ Ar ∪ As belongs exactly to one service line l, satisfying ∑

l δl,a = 1 where δl,a is the39
line-link incidence indicator.40

Subsidy Optimization Model41
The government-shipper interaction is modeled as a bilevel program. The lower-level model42
is a stochastic user equilibrium (SUE) problem with capacity side constraints:43
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min
f

Z(f ;s) =
∑

a∈Ab

∫ xa

0
ta(w)dw1

+
∑

m,w,k

fm
k,w

∑
a γk,aca − ∑

l λk,lsl

vm
+

∑
a∈Ar∪As∪Ah

γk,at̄a

2

+
∑

m,w,k

fm
k,w lnfm

k,w

σmvm
(1)3

subject to:4 ∑
k

fm
k,w = qm

w ∀w,m (2)5

xa ≤ ua ∀a ∈ Ar ∪As (3)6
fm

k,w ≥ 0 ∀k,w,m (4)7

where:8

xa =
∑

m,w,k

γk,afm
k,w ∀a (5)9

where xa is the link flow rate, fm
k,w is the path flow rate of commodity category m, γk,a10

is the path-link incidence indicator, ca is the freight rate of link a, vm is the value of time of11
commodity category m, σm denotes the scale parameter of the variance of perceived trans-12
portation costs in the multinomial logit model, and qm

w denotes the demand for commodity13
category m in O-D pair w.14

The upper level optimizes line-specific rail subsidies s = {sl}l∈Lr to minimize the15
weighted sum of the total revenue loss and total congestion surcharge:16

mins Y (s) = θ
∑

a∈Ar

ca(ua −x∗
a)

︸ ︷︷ ︸
Total revenue loss L(s)

+(1− θ)
∑

a∈Ar∪As

µ∗
ax∗

avm

︸ ︷︷ ︸
Total congestion surcharge C(s)

(6)17

subject to:18 ∑
l∈Lr

slf
∗
l ≤ B (7)19

sl ∈ {0,η,2η, . . . ,⌊c̄l/η⌋η}∪{c̄l} ∀l ∈ Lr (8)20
(f∗,µ∗) ∈ argmin

f
{Z(f ;s) | (2)–(4)} (9)21

where:22

f∗
l =

∑
m,w,k

λk,lf
m∗
k,w ∀l ∈ Lr (10)23

where θ ∈ [0,1] is the weighting coefficient that adjusts the trade-off between miti-24
gating the total revenue loss and total congestion surcharge, B is the subsidy budget, η is25
the subsidy increment unit, c̄l = ∑

a δl,aca is the full freight rate of line l, fl is the line flow26
rate, and µa is the congestion-induced waiting delay of link a. The objective function in (6)27
incorporates two terms: the total revenue loss L(s), which quantifies the potential loss of28
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the rail carrier due to the unused capacity of railway service lines; and the total congestion1
surcharge C(s), which aggregates the monetized congestion-induced waiting delay over all2
links, and quantifies the additional cost that shippers incur to secure immediate access to3
their desired service links beyond regular freight rates.4

Solution Algorithm5
The upper-level subsidy optimization model is solved using a tabu search metaheuristic (Al-6
gorithm 1). The lower-level SUE problem is solved using an iterative balancing algorithm7
within the Lagrangian relaxation framework embedding a disaggregate simplicial decompo-8
sition (DSD) algorithm (Algorithm 2).9

TABLE 1 Tabu Search Algorithm for the Subsidy Optimization Model

Algorithm 1: Tabu Search Algorithm for the Subsidy Optimization Model
Initialization: Use a feasible initial solution s(0)

0 satisfying the subsidy budget constraint in
(7) and the discrete constraint in (8). Initialize short-term tabu list T = ∅, long-term tabu
list F = {s(0)

0 }, historical best solution s∗ = s(0)
0 , and the corresponding objective function

value y∗ = Y (s(0)
0 ).

For Iteration n:
1. Candidate generation: For each railway service line lj ∈ Lr:

If s∗
n−1,lj

= 0: generate candidate with sn,lj = min(η,⌊c̄lj /η⌋η)
If η ≤ s∗

n−1,lj
≤ ⌊c̄lj /η⌋η: generate candidates with sn,lj = min(s∗

n−1,lj
+ η, c̄lj ) and sn,lj =

s∗
n−1,lj

−η

If s∗
n−1,lj

= c̄lj : generate candidate with sn,lj = ⌊c̄lj /η⌋η

Remove solutions in F to form candidate set Γn,nl.
2. Candidate evaluation and feasibility check: Evaluate each candidate solution s(k)

n ∈
Γn,nl through parallel computing:

a. Solve lower-level equilibrium (Algorithm 2)
b. Compute f∗

l ,x∗
a

c. If ∑
l∈Lr

s
(k)
n,l f

∗
l ≤ B, accept the solution and add to the feasible set Γn,f

3. Selection:
If mins(k)

n ∈Γn,f
Y (s(k)

n ) < y∗ (aspiration criteria), select best s∗
n and update s∗,y∗

Else, select best candidate s∗
n with (lk, δk) /∈ T

4. Tabu list update:
Add reverse move (l∗,−δ∗) to T
Remove oldest entry if |T |> Tmax, where Tmax denotes the short-term tabu tenure
Add s∗

n to F
5. Termination check: Terminate after Nmax iterations or Kmax consecutive non-
improving iterations.
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TABLE 2 Iterative Balancing Algorithm for the SUE Problem

Algorithm 2: Iterative Balancing Algorithm for the SUE Problem
Initialization: n := 0; µ0

a := 0 ∀a ∈ Ar ∪As; fm,0
k,w := qm

w /|Kw| ∀k,w,m; x0
a := ∑

m,w,k γk,afm,0
k,w

∀a; LB := −∞; UB := +∞. Preset the convergence tolerance parameters ε1, ε2, ε3.
Outer loop:
1. Path generalized costs:
gm,n

k,w = 1
vm

(∑
a γk,aca − ∑

l∈Lr
λk,lsl

)
+ ∑

a∈Ar∪As
γk,at̄a +∑

a∈Ab
γk,ata(xn

a) +∑
a∈Ar∪As

γk,aµn
a

2. DSD inner loop:
a. Compute auxiliary path flows f̃m,n

k,w using the multinomial logit model
b. Find optimal step size λ∗ = argminλ∈[0,1] L((1−λ)fn +λf̃n;µn)
c. Update flows: fm,n

k,w := (1−λ∗)fm,n
k,w +λ∗f̃m,n

k,w

d. Update aggregate link flows xn
a := ∑

m,w,k γk,afm,n
k,w

e. Repeat until ∥xn−x̃n∥2∑
a xn

a
≤ ε1

3. Feasibility test:
If xn+1

a ≤ (1+ ε2)ua ∀a ∈ Ar ∪As: UB := Z(fn+1)
Else: LB := Z(fn+1)
4. Convergence test:
If (UB −LB)/LB < ε3: terminate and return f∗,µn

5. Multiplier update:
µn+1

a := max
{
0,µn

a +ω
[
lnxn+1

a − lnua

]}
∀a ∈ Ar ∪As; n := n+1
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NUMERICAL ANALYSIS1
Experimental Setup2
The multimodal multicommodity China-Europe freight transportation network used in this3
study has 50 Chinese origins, 51 European destinations, 55 CRE lines, and 27 liner ship-4
ping lines. The network specifications and categorized monthly O-D freight demand rates5
for the year of 2019 are from (1). The parameters include: the subsidy increment unit6
η = $500/TEU, tabu search termination criteria Nmax = 500 and Kmax = 150, convergence7
tolerance parameters ε1 = ε2 = ε3 = 10−4, and the subsidy budget B of each month equal to8
the total subsidy expenditure under the current subsidy scheme.9

We calibrate the short-term tabu tenure through evaluating tenure efficacy across10
tenure values from 7 to 30 with θ = 0.5, primarily based on the quality of the solution11
measured by the objective function value of the optimized solution, and secondarily based12
on the convergence efficiency measured by iteration count. The experimental results indicate13
that a tenure value of 25 achieves the best overall performance and therefore this tenure value14
is adopted for all subsequent experiments. For each month, we run the tabu search algorithm15
multiple times with random feasible initial solutions with θ = 0.5, selecting the best solution16
as the initial solution for all subsequent experiments in this month. The subsidy optimization17
problem is solved repeatedly with a discrete set of weighting coefficient values ranging from18
0 to 1 for all 12 months of the year of 2019.19

The solution algorithm is implemented in C++ and executed on a desktop computer20
equipped with an Intel Core i9-12900KF processor and 32 GB of RAM.21

Computational Results22
In the China-Europe freight transportation demand dataset, the freight demand rates and23
the composition exhibit a significant fluctuation across months. In July 2019, the month24
with the highest demand rate, the demand rate is 53% higher than that in February 2019, the25
month with the lowest demand rate. Therefore, we elaborate the computational results and26
the optimization results for February and July 2019 as two representative months, although27
the results for all other months are also obtained.28

The convergence curves of all tabu search processes initialized with random feasible29
subsidy solutions for February and July 2019 are shown in Figure 1. For the same month,30
the objective function value of the worst optimized solution is up to 13% higher than that of31
the best optimized solution. This underscores the necessity to select the best initial solution32
for each month prior to conducting further experiments.33

Table 3 shows that the average computation time across all weighting coefficient values34
is 8.7 h and 12.5 h for February and July 2019, respectively. The computation time is heavily35
dependent on many factors, especially the termination criteria in the tabu search algorithm,36
and the convergence tolerance parameters in the iterative balancing algorithm and the DSD37
algorithm. Therefore, these metrics presented in the table should only be considered as38
references that indicate that the tabu search algorithm can provide high-quality solutions in39
a reasonable computation time.40

Optimization Results41
For simplicity, we compare only the performance of the optimized subsidy scheme with42
θ = 0.5 with that of the current subsidy scheme for each month. The weighting coefficient43
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(a) February 2019 (b) July 2019

FIGURE 1 Example convergence curves of the tabu search procedure

TABLE 3 Example Computation Performance of the Tabu Search Procedure

Month Weighting Coefficient
0 0.1 0.2 0.5 0.8 0.9 1

February 2019 Iterations 380 435 466 500 500 394 425
Time (h) 7.05 8.05 10.39 11.04 10.44 7.16 6.90

July 2019 Iterations 352 338 300 500 375 286 313
Time (h) 10.77 8.89 9.57 17.18 9.91 13.73 17.77

of 0.5 indicates an equal treatment of the concerns of the carrier and shippers.1
In terms of total revenue loss and total congestion surcharge, which are directly im-2

pacted by subsidies and the main concerns of the CRE carrier and individual cargo shippers,3
the economic advantage of the optimized subsidy scheme is evident, as shown in Figure 2.4
It clearly shows that the optimized subsidy scheme realizes a significantly lower level of the5
two performance measures than that under the current subsidy scheme for all months of6
the year of 2019, indicating that it benefits both the CRE carrier and shippers as expected7
and performs substantially better than the current subsidy scheme. Specifically, the total8
revenue loss under the optimized subsidy scheme is reduced by 27.3% on average over 129
months, equivalent to $1.74 million per week, from that under the current subsidy scheme.10
Similarly, the total congestion surcharge under the optimized subsidy scheme is reduced by11
64.2% on average over 12 months from that under the current subsidy scheme.12

Figure 3 compares the containerized freight flow rates and compositions of all CRE13
service lines under the current subsidy scheme and the optimized subsidy scheme. The14
volume of high-value goods (e.g., food and electronics) carried by a line remains stable unless15
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FIGURE 2 Comparison of total revenue loss and total congestion surcharge
under the current subsidy and optimized subsidy scenarios

the line reaches saturation under the optimized subsidy scheme. On the other hand, those1
saturated lines under the current subsidy scheme observed the optimized subsidy scheme’s2
success in enabling a larger proportion of high-value goods to use these lines (e.g., Line 50,3
Line 67 and Line 77 in February and July 2019), except for a few cases where lines remain4
dominated by textiles under the optimized subsidy scheme due to their relatively low subsidy5
values under the current subsidy scheme (e.g., Line 54 and Line 62 in February and July6
2019). Moreover, a small number of saturated lines under the current subsidy scheme are7
now carrying goods below their capacity under the optimized subsidy scheme (e.g., Line 408
and Line 74 in February and July 2019).9

We perform a comparative evaluation on the economic effectiveness of the optimized10
subsidy scenario compared to the current subsidy scenario, as shown in Table 4. In July11
2019, for example, with a total subsidy expenditure of $19,710,206, the optimized subsidy12
scheme reduces the total revenue loss of the CRE carrier and the total congestion surcharge of13
shippers by 33% and 48%, respectively, compared to the current subsidy scenario, although14
the subsidy expenditure paid by the government is only 97% of that under the current15
subsidy scheme. We define the benefit-cost ratio (BCR) as the total cost reduction divided16
by total subsidy expenditure, where the total cost reduction is the sum of the total revenue17
loss reduction and the total congestion surcharge reduction made by subsidies. A higher18
BCR indicates greater efficiency in producing system benefits through subsidies. Again,19
using February and July 2019 as two example months, we found that the BCR is only 0.6320
in February and 0.72 in July under the current subsidy scheme; however, the BCR reaches21
1.11 and 1.14 in the two months under the optimized subsidy scheme. The results of other22
months of the year of 2019 demonstrate that the government’s subsidy expenditure is reduced23
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(a) February 2019

(b) July 2019

FIGURE 3 Comparison of freight flow redistribution under the current and
optimized subsidy scenarios
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by 8.3% on average under the optimized subsidy scheme. A subsidy expenditure of $1 would1
reduce system loss by $1.08 to $1.39, with an average of $1.20, compared to $0.63 to $0.732
under the current subsidy scheme, which averages $0.69. As we know, a BCR value greater3
than 1 indicates that the benefit produced outweighs the investment cost. The above result4
shows that the current subsidy scheme is unfortunately not a financially worthy option in5
that it produces a net social loss, but the optimized subsidy scheme successfully overcomes6
the deficiency. In summary, the optimized subsidy scheme achieves a desirable tripartite7
situation, in which the government, CRE carrier, and individual shippers all benefit from it.8

TABLE 4 Economic Performance Results of CRE with Different Subsidy
Schemes

Performance Measure
Current Subsidy Scheme Optimized Subsidy Scheme
Feb. 2019 Jul. 2019 Feb. 2019 Jul. 2019

Total freight flow rate (TEU/week) 5,894.80 6,721.00 6,439.05 7,024.85
Total revenue loss ($/week) 8,399,960 4,885,089 5,735,600 3,268,242
Total congestion surcharge ($/week) 7,030,585 12,769,490 1,274,926 6,651,558
Total cost reduction ($/week) 11,340,334 14,766,759 19,760,352 22,501,539
Total subsidy expenditure ($/week) 17,915,269 20,403,471 17,784,562 19,710,206
Benefit-cost ratio 0.63 0.72 1.11 1.14

Impact of Weighting Coefficient in the Objective Function9
The weighting coefficient in the subsidy optimization model, θ, directly controls how the10
government prioritizes the interest of the carrier versus the interest of shippers in the context11
of specific policy objectives. From an optimization perspective, a higher weighting coefficient12
value would yield a solution with a lower total revenue loss but a higher total congestion13
surcharge. The total revenue loss and total congestion surcharge with the discrete set of14
weighting coefficient values in February and July 2019 are shown in Figure 4.15

Notably, the observed variations in total revenue loss and total congestion surcharge16
with respect to the weighting coefficient values are in line with our expectations. As demon-17
strated in the figure, when θ increases from 0.5 to 1, the total revenue loss decreases by18
15.0% and 16.3% in February and July 2019, respectively; when θ decreases from 0.5 to 0,19
the total congestion surcharge decreases by 44.2% and 2.7% in the two months, respectively.20
This result demonstrates that changing the weighting coefficient can effectively adjust the21
relative importance of the carrier and shippers in the optimization of subsidies. In addition,22
high-demand months like July 2019 have greater potential to reduce the total revenue loss of23
the carrier, while lower-demand months like February 2019 have greater potential to reduce24
the total congestion surcharge of shippers. However, reducing either the total revenue loss or25
total congestion surcharge comes at the expense of the other stakeholder. Specifically, when26
θ decreases from 0.5 to 0, the total revenue loss increases by 30.1% and 27.0% in February27
and July 2019, respectively; when θ increases from 0.5 to 1, the total congestion surcharge28



Wang, Xie, Zou, and Fu 13

(a) February 2019 (b) July 2019

FIGURE 4 Total revenue loss and total congestion surcharge under the optimized
subsidy schemes with different weighting coefficient values

becomes 540% and 129% higher in the two months, respectively. This observation indicates1
that overly prioritizing mitigating the total revenue loss of the carrier while ignoring shippers’2
fierce competition for limited transportation capacity may lead to an unacceptable situation.3

We then make an in-depth comparison of the subsidy amount, revenue loss, and4
congestion surcharge on the line level among the current subsidy scheme and optimized5
subsidy schemes with different weighting coefficient values, as shown in Figure 5. The rev-6
enue loss of a line is defined as the sum of the revenue loss over all its links (i.e., Ll(s) =7 ∑

a∈Au
δl,a ·ca(ua −x∗

a)), and the congestion surcharge of a line is defined similarly as the sum8
of the congestion surcharge over all its links (i.e., Cl(s) = ∑

a∈Ac
δl,a · (∑

m∈M µ∗
axm,∗

a vm)).9
Overall, the optimized subsidy schemes generally reduce both revenue loss and congestion10
surcharge for most CRE lines compared to the current subsidy scheme, exhibiting good eq-11
uity performance in enhancing individual lines’ efficiency. Importantly, for most lines, the12
direction of change in subsidy amount, revenue loss, and congestion surcharge (i.e., increase13
or decrease relative to the current subsidy scheme) remains consistent across all weighting14
coefficient values in the optimized subsidy schemes. However, for a small number of lines15
(e.g., Line 76 and Line 80), the direction of change in these indicators is inconsistent across16
weighting coefficient values. All CRE lines may be grouped into three subsets: (1) lines with17
zero/low revenue loss and high congestion surcharge; (2) lines with zero/low revenue loss18
and zero/low congestion surcharge; (3) lines with high revenue loss and zero/low congestion19
surcharge. The high congestion surcharge or revenue loss phenomena with lines in the first20
and third subsets are typically due to demand shortage/surplus and geographical locations.21
It is interesting to find that for unsaturated CRE lines under the current subsidy scheme, the22
optimized subsidy schemes yield a subsidy level not lower than the current subsidy scheme23
for most weighting coefficient values. In contrast, for oversaturated lines under the current24
subsidy scheme, optimized subsidy schemes reduce subsidies for most weighting coefficient25
values. This reduction alleviates congestion surcharge significantly for most oversaturated26
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lines, with some even transitioning to unsaturated status with minor revenue loss. This find-1
ing justifies that optimized subsidy schemes improve system performance simultaneously:2
increasing subsidies for unsaturated lines and reducing financial support for oversaturated3
ones. Under such intentionally optimized subsidy schemes, over 90% of the CRE lines are4
now either saturated with a short waiting delay or unsaturated with a small unused capacity.5

Discernible differences emerge among the optimized subsidy schemes themselves de-6
pending on the weighting coefficient, though less pronounced than those observed between7
the optimized schemes collectively and the current scheme. Generally, higher weighting co-8
efficient values lead to higher overall subsidy levels, as increased subsidies generally raise the9
probability that shippers use the CRE service. At the individual line level, the optimized10
subsidy amount increases or remains constant for most lines as θ increases, but decreases for11
a minority of lines. Notably, when minimizing the total revenue loss is the only optimization12
objective (i.e., θ = 1), the resulting optimized subsidy scheme allocates significantly higher13
subsidies to specific lines than optimized subsidy schemes under other weighting coefficient14
values (e.g., Line 47, Line 66, and Line 76). Although an excessively high subsidy on a15
specific line does not necessarily increase the congestion surcharge on itself due to complex16
competition among modes and lines, a more expensive overall subsidy scheme can signifi-17
cantly increase the congestion surcharge on certain critical lines (e.g., Line 48, Line 78, and18
Line 79). This occurs because the enhanced attractiveness of the entire CRE service relative19
to liner shipping increases the overall demand for the CRE service. This increased demand20
then concentrates on certain critical lines, raising their congestion surcharge. Consequently,21
the total congestion surcharge for the shippers increases, consistent with Figure 4 where very22
high total congestion surcharge occurs with θ = 1. This outcome clearly demonstrates the23
negative effects of focusing only on minimizing the total revenue loss in the subsidy opti-24
mization model, particularly given that the percentage increase in congestion surcharge for25
individual lines can be substantially higher than that for the total congestion surcharge.26

In our subsidy optimization model, the subsidy budget constraint in (7) stipulates that27
the total subsidy expenditure of the government should not exceed a subsidy budget for each28
month. Figure 6 shows that the subsidy budget constraint effectively constrains the total29
subsidy expenditure of the government. The total subsidy expenditure generally increases as30
the weighting coefficient increases, until it is very close to the subsidy budget. Notably, since31
the subsidy amount is assumed to be discrete, the total subsidy expenditure generally cannot32
equal the subsidy budget (i.e., the subsidy budget constraint is binding), but the subsidy33
budget constraint takes effect for the optimization in specific months under certain weighting34
coefficient values. The subsidy budget constraint takes effect by excluding those solutions35
that violate them during the feasibility check in the tabu search algorithm. Examination of36
the solution process reveals that subsidy budget constraints take effect in the experiments37
with θ = 0.8, 0.9, and 1 in February 2019, and with θ = 1 in July 2019. Maximizing system38
benefits with a smaller total subsidy expenditure is worth considering, especially given that,39
at least partially, increasing the overall subsidy level may not always benefit the CRE system,40
particularly individual shippers. Thus, setting an appropriate subsidy budget is a critical41
step before changing the weighting coefficient to make a good trade-off between the interest of42
the carrier and the shippers. Yang et al. (7) directly minimizes the total subsidy expenditure43
when there is a lower limit on the system benefit, which is different from our model from a44
policy perspective. Incorporating the total subsidy expenditure as a term in the objective45
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(a) February 2019
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(b) July 2019

FIGURE 5 Line-specific subsidy amount, revenue loss and congestion surcharge
under the current subsidy scheme, and optimized subsidy schemes with different
weighting coefficient values
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function is also an alternative, but this would increase the complexity of the model.1

FIGURE 6 Total subsidy expenditure under the optimized subsidy schemes with
different weighting coefficient values

CONCLUSION2
This paper proposes a bilevel optimization model for designing CRE rail freight subsidies.3
The lower level formulates a multimodal multicommodity freight transportation network4
equilibrium model with explicit link transportation capacity constraints and flow-dependent5
transfer delays at bottleneck facilities. The upper level optimizes line-specific subsidies un-6
der a subsidy budget constraint, minimizing the weighted sum of the total revenue loss of7
the carrier and the total congestion surcharge of shippers. The key novelty with this mod-8
eling work lies in explicitly incorporating the total congestion surcharge into the upper-level9
objective function, where this term monetizes the dual variables associated with link trans-10
portation capacity constraints. This approach quantifies the implicit waiting delay incurred11
by shippers due to competition for limited transportation capacity, a consideration less com-12
monly addressed in the existing literature on freight subsidy design. To solve this complex13
bilevel model, a specialized solution procedure is developed: the lower-level network equilib-14
rium problem with capacity side constraints is solved using an iterative balancing method15
within the Lagrangian relaxation framework embedding a disaggregate simplicial decompo-16
sition algorithm; the upper-level subsidy optimization problem is solved using a tabu search17
metaheuristic.18

The model is applied to the multimodal multicommodity China-Europe freight trans-19
portation network using categorized monthly O-D freight demand rates for the year of 2019.20
The analysis focused on two key aspects: Comparing the optimized subsidy scheme with21
the current subsidy scheme, and evaluating the impact of the weighting coefficient in the22
objective function. The following findings reveal some solution behaviors and advantages of23
the proposed model.24

First, the optimized subsidy scheme substantially outperformed the current scheme.25
It achieves an average reduction of 27.3% in the total revenue loss of the rail carrier across all26
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months, and simultaneously an average reduction of 64.2% in the total congestion surcharge1
of shippers. A subsidy expenditure of $1 would reduce system loss by $1.20, substantially2
higher than the $0.69 reduction achieved under the current subsidy scheme. This demon-3
strates that optimized subsidies can economically benefit both the carrier and shippers more4
effectively than existing practices. At the individual line level, optimized schemes generally5
increase subsidies for unsaturated lines and reduce subsidies for oversaturated lines. This6
intentional reallocation alleviates congestion surcharge significantly on oversaturated lines7
while maintaining utilization. Consequently, over 90% of the rail lines under optimized8
schemes were found to be either saturated with short waiting delays or unsaturated with9
minimal unused capacity.10

Second, the weighting coefficient in the subsidy optimization model proves to be a11
crucial parameter governing the trade-off between mitigating the revenue loss of the carrier12
and the congestion surcharge of shippers. As anticipated, increasing the weighting coefficient13
value reduces total revenue loss but increases total congestion surcharge, while decreasing14
the weighting coefficient value reduces total congestion surcharge but increases total revenue15
loss. Importantly, optimization schemes prioritizing the carrier’s interest excessively may16
lead to an unacceptable situation where the total congestion surcharge increases dramati-17
cally, by hundreds of percent in some months. This outcome arises because such schemes18
allocate very high subsidies to specific lines, making the entire rail service significantly more19
attractive relative to liner shipping. This increased attractiveness concentrates demand and20
disproportionately penalizes shippers competing for capacity on critical railway service lines,21
leading to sharply increased congestion surcharges.22

Third, the subsidy budget constraint plays an important role in the optimization.23
Total subsidy expenditure generally increases with the weighting coefficient value until it24
approaches the budget limit. While the discrete nature of subsidies often prevents the con-25
straint from being strictly binding, it frequently takes effect during the tabu search process,26
especially for higher weighting coefficient values, by excluding infeasible solutions. This27
underscores the importance of setting an appropriate subsidy budget level to effectively bal-28
ance stakeholder interests. An insufficient budget may restrict potentially beneficial schemes,29
while an excessively high budget could enable schemes that exacerbate congestion surcharge30
under high weighting coefficient values.31
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